Ocean water samples collected around the world have yielded a treasure trove of new data about RNA viruses, expanding ecological research possibilities and reshaping our understanding of how these small but significant submicroscopic particles evolved.
Combining machine-learning analyses with traditional evolutionary trees, an international team of researchers has identified 5,500 new RNA virus species that represent all five known RNA virus phyla and suggest there are at least five new RNA virus phyla needed to capture them.
The most abundant collection of newly identified species belong to a proposed phylum researchers named Taraviricota, a nod to the source of the 35,000 water samples that enabled the analysis: the Tara Oceans Consortium, an ongoing global study onboard the schooner Tara of the impact of climate change on the world’s oceans.
“There’s so much new diversity here – and an entire phylum, the Taraviricota,were found all over the oceans, which suggests they’re ecologically important,” said lead author Matthew Sullivan, professor of microbiology at The Ohio State University.
“RNA viruses are clearly important in our world, but we usually only study a tiny slice of them – the few hundred that harm humans, plants, and animals. We wanted to systematically study them on a very big scale and explore an environment no one had looked at deeply, and we got lucky because virtually every species was new, and many were really new.”
The study was published on April 7, 2022, in the journal Science.